人工智能与数学前沿综述:如何借助 AI 发现数学规律?
人工智能学家 2024-01-09 18:04 发表于广东
以下文章来源于集智俱乐部 ,作者陈小杨
导语
为了探索数学与人工智能深度融合的可能性,集智俱乐部联合同济大学特聘研究员陈小杨、清华大学交叉信息学院助理教授袁洋、南洋理工大学副教授夏克林三位老师,共同发起“人工智能与数学”读书会,希望从 AI for Math,Math for AI 两个方面深入探讨人工智能与数学的密切联系。
在人工智能与数学读书会第一期,陈小杨老师探讨了符号回归、强化学习构造反例、AI辅助发现数学规律,以及大语言模型在数学研究中的应用,并分享了一些最新研究成果。在以 ChatGPT 为代表的大语言模型集中爆发的当下,如何利用语言大模型,构建一个人机交互的数学研究平台?陈老师介绍了最新发布的 DeepMath 数学大模型。本文是此次读书会的文字整理。
研究领域:AI for Math,符号回归,强化学习,大语言模型
目录
1. 人工智能和神经网络的背景知识
2. 计算机辅助数学研究
2.1 符号回归寻找数学表达式
2.2 强化学习构造猜想反例
2.3 AI 辅助发现数学规律
3. 大语言模型在数学研究中的应用
4. 人机交互的数学研究平台
5. 展望:如何借助 AI 发现新的数学概念?
1. 人工智能和神经网络的背景知识
回顾人工智能和神经网络的发展历史,人工智能(Artificial Intelligence)是指让机器具有人类的智能,其诞生的标志性事件是1956 年的达特茅斯(Dartmouth)会议,在这次会议上,“人工智能”被提出并作为本研究领域的名称。
图:人工智能的发展历史与标志性事件
通用近似定理
在数学里,对于任何一个连续函数,总是可以找到一个多项式函数或者三角基数去逼近它。
然而,神经网络这一类特殊的函数在基础数学里并没有被广泛应用。尽管如此,计算数学领域已经使用神经网络来解决一些传统数学方法难以解决的问题。例如,使用神经网络去解决一些多尺度建模的问题。
2. 计算机辅助数学研究
自人工智能诞生以来,探索 AI 在数学研究中的应用一直是一个重要的研究方向,并取得了许多重要成果。在符号主义的影响下,A. Newell 和 H. Simon 研发的“逻辑理论家“证明了《数学原理》中的多条定理,这是符号主义的成功实践之一。而符号主义的另一重大成果,则是吴文俊先生开创的几何定理机器证明。吴先生利用代数几何,成功的将平面几何表述成一套精确的形式语句,从而可以借助计算机进行推理,实现平面几何定理的机器证明。
计算机辅助数学研究已经取得了一些令人瞩目的成就。例如,图论里经典的四色定理(任何平面上的地图只需要使用最多四种颜色来进行着色,以确保相邻的地区颜色不同)曾被计算机用穷举法证明。最近5年内,用神经网络辅助数学研究比较重要的工作包括:
· 2.1 符号回归寻找数学表达式
·
· 在训练方面,可以应用传统的机器学习方法,如线性回归、非线性回归、Transformer 架构、强化学习,或在网络结构中加入一些物理、数学或其他学科的先验知识来约束搜索空间。
·
·
(1)线性符号回归与非线性符号回归
·
线性符号回归(Linear SR)的目标表达式有m个组成部分,单个目标表达式就是m=1的情况。每个部分可以表示成一个函数的线性组合,而这些函数来源于事先设定的函数库里。优化的目标是学习每个线性表达式的系数。如果用监督学习的话,就定一个损失函数,然后最小化损失函数。
· 因此,符号回归与传统回归方法核心的不同在于,事先给定了函数库,然后在这个函数库里去选取函数进行线性或非线性的组合,再去优化参数。
(2)基于强化学习的符号回归方法:深度符号回归
· Brenden K. Petersen, et al. Deep Symbolic Regression:Recovering Mathematical ExpressionsFrom Data Via Risk-Seeking Policy Gradients. ICLR 2021
· 基于强化学习的符号回归方法引入了智能体,即深度神经网络。按照数学公式的树表达式法,建立由一些数学符号构成的库,这样每个符号就编码成token,比如一个由四个符号构成的库,每个符号可以编码成一个4维的 one-hot 向量。通过约束搜索空间和优化常数,对符号表达式进行约束,例如限制表达式长度、表达式不能全是常数等。通过强化学习进行策略优化,最大化奖励函数来指导生成合适的数学表达式。
图:智能体(深度神经网络)生成树表达式
· Wassim Tenachi, et al. Deep symbolic regression for physics guided by units constraints: toward the automated discovery of physical laws. arXiv:2303.03192.
·
· 图:搜索空间
·
图:搜索空间被物理量纲约束
· 图:用物理量纲约束的深度符号回归寻找粒子的相对论能量
·
在物理学中,这种方法已被用于发现一些已知的方程,但对于一些未知的物理规律,目前还没有得出明确的结论。在数学领域,由于大多数基础数学研究者不太关注应用数学或神经网络,因此尚未广泛应用于发现定理。然而,理论上来说,这个方法有巨大的发展潜力,因为数学中的公式比物理中的多得多,而且不像物理那样需要通过实验验证,相对来说验证反馈时间较短。
Adam. Zsolt. Wagner . “Constructions in combinatorics via neural networks”.arXiv:2104.14516.
另一个令人激动的领域是使用强化学习构造猜想反例。以图论为例,先将图编码为邻接矩阵,然后将邻接矩阵转化为向量作为神经网络的输入,并根据环境反馈计算奖励,最后进行策略优化。
Davies. Alex, et al. “Advancing mathematics by guiding human intuition with AI. ” Nature 600 (2021): 70-74.
扭结是三维欧氏空间或者三维球面中的简单闭合曲线。为了区分两个扭结是否等价,即是否可以将一个扭结变形成另一个,人们引入了扭结不变量。扭结不变量有很多种,其中最著名的就是Jones Polynomial。为了探索不同的扭结不变量之间的关系,作者通过训练AI然后人工反馈从而找到一些规律。
具体来讲,模型训练了一个前馈神经网络来评估扭结的几何和代数不变量之间是否存在关系,根据随机采样的扭结数据集上的几何不变量来预测代数特征。为了了解网络是如何做出这一预测的,他们使用了基于梯度的归因技术来确定哪些几何不变量与代数特征最相关。通过人工反馈的方式,他们猜测到了这个不等式,然后进一步又在另一篇论文里严格证明了这个不等式。所以这项工作是AI辅助发现了数学定理。
在矩阵乘法领域,AI的应用也引人注目。研究人员发现了更快的矩阵乘法算法,通过强化学习将乘法运算次数降低到最低。比如,对于一个2*2的矩阵,标准的矩阵乘法要做8次乘法,而他们用强化学习寻找出一个新算法,把乘法运算减少到了7次。
图:Strassen's algorithm 示意图,其中图a是三维情形的矩阵乘法的张量表征, ai, bi, ci构成一个size为 (4,4,4) 的三维张量;图b展示了 Strassen’s algorithm 中使用的7个乘法;图c展示了将张量分解为7个秩为1的项的和
Gal Raayoni ,et al. Generating conjectures on fundamental constants with the Ramanujan Machine. Nature , 590 (2021): 67-73.
这项工作的核心思想是去寻找物理学或者数学里一些基本的常数的连分数的表示。
图:各种常数的连分数表示
形式化的自动定理证明 Kaiyu Yang et al. LeanDojo: Theorem Proving with Retrieval-Augmented Language Models. arXiv:2306.15626
这篇论文用大模型跟另外一套形式化的语言Lean去进行交互。Lean是一种形式化的语言,它将数学语言转化成计算机语言,然后在这个语言框架下去进行严格的推理。所以可以确保它的推理准确性比大模型要高。微软开发了Lean这个库,把很多数学知识变成了这种语言,涵盖上至本科数学的知识。LeanDojo基于已有的库,把计算机语言还原成自然语言,利用思维链 (chain-of-thought) 推理,把证明过程放到大模型里去训练,然后做微调,以提升大模型的能力。
4. 人机交互的数学研究平台
如何利用语言大模型,构建一个人机交互的数学研究平台?数学研究大体分为两个过程:发现数学新命题,证明或证否数学命题。基于这两个基本过程,我们认为人机交互的数学研究平台应该包含如下基本组件:语言大模型 + 符号计算+ 符号回归 + 构造反例 + 自动证明。
语言大模型已经逐渐成为人工智能时代的操作系统,也必将在人机交互的数学研究中发挥基础作用。在数学的发展历程中,许多重大猜想都是依赖数学其他分支的工具和思想得以证明的。由于语言大模型广泛的知识储备,数学家可以通过自然语言与计算机进行交互,整合全领域的数学知识,发现新的数学现象,并借助语言大模型的逻辑推理能力,实现数学命题的证明。然而,现阶段语言大模型在数学推理方面的能力仍然有所欠缺。如何搜集更多的专业数据并开发更强大的算法,改进现有语言大模型的数学推理能力是未来急需解决的重要问题。
在以上基本组件中,语言大模型是一个基础设施,其他组件作为插件部署并被调用。数学家可以借助该平台,通过自然语言与计算机进行交互,实现对数学命题更高效的发现,证明或证否。经过几个月的努力,DeepMath 研究团队近日发布了 DeepMath 数学大模型,并正在构建人机交互的现代数学研究平台。模型已上传到 Huggingface,感兴趣的朋友可以登录 www.deepmath.cn 通过邀请码注册,在线体验实际效果。 DeepMath 大模型的特点:DeepMath 大模型基于 Llama2 微调,显著提升了大模型在现代数学知识问答的能力。为了验证模型效果,我们在线问了一个拓扑学问题:what is a compact topological space? 得到的答案是:A topological space X is compact if every open cover of X has a finite subcover. 回答相当准确!而如果使用原始 Llama2,会得到怎样的回复呢? 可以参考如下测试结果的截图:
可以看出,尽管原始 Llama2 的回复比较详尽,但是结果并不准确。我们又测试了分析、代数等学科的问题,发现 DeepMath 大模型的效果都相当不错。那么,我们是怎么训练出这种效果呢?答案还是在于高质量数据集的构建。我们耗费了数月时间人工标注了几千条现代数学知识问答指令,涵盖了微积分,实分析,复分析,概率论,泛函分析,抽象代数,微分方程,微分几何,拓扑学等多个方向。DeepMath大模型正是基于这个高质量的数据集监督微调而来。
为了增强语言大模型的计算能力,我们将 DeepMath 数学大模型与开源数学软件 Sagemath 结合起来。我们构建了一个 Sagemath 代码数据集,并与现代数学知识问答数据集结合,共同微调训练 Llama2,显著提升了模型使用工具与计算能力。
我们将陆续开发符号回归,构造反例,自动证明等组件,并基于AI智能体的思想,将所有组件有效组织起来,从而达到通过自然语言交互并调度各组件,实现对数学命题更高效的发现,证明或证否。
最后,陈小杨老师提出了几个未来AI和数学结合的发展方向:
学者简介
陈小杨,同济大学特聘研究员。2014年5月获得美国圣母大学数学博士学位,2014-2016年在澳门大学从事博士后研究,并于2016年底入职同济大学。陈小杨的主要研究方向为黎曼几何,在 Geometry and Topology, Advances in Mathematics 等期刊发表了多篇研究论文。近期,陈小杨与研究团队开展了大模型在基础数学的应用研究,并计划开发机器学习算法用于发现数学规律,构造数学猜想反例等。
·
广州方学统计科技有限责任公司 版权所有 粤ICP备19150244号